Learning Adaptive Value of Information for Structured Prediction

نویسندگان

  • David J. Weiss
  • Ben Taskar
چکیده

Discriminative methods for learning structured models have enabled wide-spread use of very rich feature representations. However, the computational cost of feature extraction is prohibitive for large-scale or time-sensitive applications, often dominating the cost of inference in the models. Significant efforts have been devoted to sparsity-based model selection to decrease this cost. Such feature selection methods control computation statically and miss the opportunity to finetune feature extraction to each input at run-time. We address the key challenge of learning to control fine-grained feature extraction adaptively, exploiting nonhomogeneity of the data. We propose an architecture that uses a rich feedback loop between extraction and prediction. The run-time control policy is learned using efficient value-function approximation, which adaptively determines the value of information of features at the level of individual variables for each input. We demonstrate significant speedups over state-of-the-art methods on two challenging datasets. For articulated pose estimation in video, we achieve a more accurate state-of-the-art model that is also faster, with similar results on an OCR task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task

In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...

متن کامل

The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier

The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...

متن کامل

Structured Prediction with Test-time Budget Constraints

We study the problem of structured prediction under test-time budget constraints. We propose a novel approach applicable to a wide range of structured prediction problems in computer vision and natural language processing. Our approach seeks to adaptively generate computationally costly features during test-time in order to reduce the computational cost of prediction while maintaining predictio...

متن کامل

Unsupervised Classification of Planning Instances

In this paper we introduce a novel approach for unsupervised classification of planning instances based on the recent formalism of planning programs. Our approach is inspired by structured prediction in machine learning, which aims at predicting structured information about a given input rather than a scalar value. In our case, each input is an unlabelled classical planning instance, and the as...

متن کامل

Prediction of Weld Strength in Resistance Spot Welded Samples by Adaptive Neuro-Fuzzy Inference System (ANFIS)

Resistance Spot Welding (RSW) is one of the effective manufacturing processes used widely for joining sheet metals. Prediction of weld strength of welded samples has great importance in manufacturing and different methods are used by researchers to find the fracture force. In this article, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized for prediction of joint strength in welded s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013